EsE (Mains) 2019

Electronic Devices \& Circuits Imp. Questions with Solutions

1. A. Derive the condition for minimum conductivity in case of a semiconductor material. Find expression for minimum conductivity \& give relation between intrinsic conductivity \& minimum conductivity.
B. Find minimum conductivity in case of a semiconductor which has electron mobility $=1000 \mathrm{~cm}^{2} / \mathrm{V}$-sec, hole mobility $=600 \mathrm{~cm}^{2} / \mathrm{V}$-sec and intrinsic conductivity is $10^{-6} / \Omega-\mathrm{cm}$.
Ans.
A. Conductivity of a semiconductor is given by,
$\sigma=n q \mu_{n}+p q \mu_{p}$
$\& n=\frac{n i^{2}}{p} \quad \ldots \ldots \ldots .($ mass action law $)$
Putting this value in equation (1)
$\therefore \sigma=\frac{n i^{2}}{p} q \mu_{n}+p q \mu_{p}$
For minimum conductivity
$\frac{d \sigma}{d p}=0$
$\therefore \frac{d \sigma}{d p}=-\frac{n i^{2}}{p^{2}} q \mu_{n}+q \mu_{p}=0$
$\therefore q \mu_{p}=\frac{n i^{2}}{p^{2}} q \mu_{n}$
$\therefore p=n i \sqrt{\frac{\mu_{n}}{\mu_{p}}}$
From mass action law
$n=\frac{n i^{2}}{p}$
$n=\frac{n i^{2}}{n i \sqrt{\frac{\mu_{n}}{\mu_{p}}}}$
$\therefore n=n i \sqrt{\frac{\mu_{p}}{\mu_{n}}}$
\therefore The condition for minimum conductivity is
$p=n i \sqrt{\frac{\mu_{n}}{\mu_{p}}}$ and $n=n i \sqrt{\frac{\mu_{p}}{\mu_{n}}}$

Substituting these values in equation (i)

$$
\begin{aligned}
& \therefore \sigma_{\min }=n i \sqrt{\frac{\mu_{p}}{\mu_{n}}} \cdot q \cdot \mu_{n}+n i \sqrt{\frac{\mu_{n}}{\mu_{p}}} \cdot q \cdot \mu_{p} \\
& \therefore \sigma_{\min }=2 n i q \sqrt{\mu_{n} \mu_{p}}+n i q \sqrt{\mu_{n} \mu_{p}} \\
& \sigma_{\min }=n i q \sqrt{\mu_{n} \mu_{p}}
\end{aligned}
$$

This is the expression for minimum conductivity

$$
\begin{align*}
& \therefore \frac{\sigma_{\min }}{\sigma_{i}}=\frac{2 n i q \sqrt{\mu_{n} \mu_{p}}}{n i q q \mu_{n}+n i q \mu_{p}} \\
& \therefore \frac{\sigma_{\min }}{\sigma_{i}}=\frac{2 \sqrt{\mu_{n} \mu_{p}}}{\mu_{n}+\mu_{p}} \\
& \therefore \sigma_{\min }=\frac{2 \sigma i \sqrt{\mu_{n} \mu_{p}}}{\mu_{n}+\mu_{p}} \tag{iv}
\end{align*}
$$

B. Given $\mu_{\mathrm{n}}=1000 \mathrm{~cm}^{2} / \mathrm{v}-\mathrm{sec}, \mu_{\mathrm{p}}=$ $600 \mathrm{~cm}^{2} / \mathrm{v}-\mathrm{sec} \& \mathrm{ni}=10^{-6} / \Omega-\mathrm{cm}$ From equation (iv)

$$
\begin{aligned}
& \sigma_{\min }=\frac{2 \times 10-6 \times \sqrt{1000 \times 600}}{1000+600} \\
& \therefore \sigma_{\min }=9.68 \times 10^{-7} / \Omega-\mathrm{cm}
\end{aligned}
$$

We can observe it is less than intrinsic conductivity.
2. An abrupt $G e$ junction diode has $N_{A}=$ 10^{16} atoms $/ \mathrm{cm}^{3}$ and $\mathrm{N}_{\mathrm{D}}=10^{14}$ atoms / cm^{3} at room temperature is forward biased with a 0.15 volt. Plot the carrier concentration and hole and electron current densities as a function of distance. Assume junction area as 2 mm^{2}, diffusion length of electrons and holes as 0.04 cm and 0.05 cm respectively.
(Assume $D_{n}=100 \mathrm{~cm}^{2} / \mathrm{sec}$ and $D_{p}=$ $50 \mathrm{~cm}^{2} / \mathrm{sec}$)
Ans.
$\mathrm{N}_{\mathrm{A}}=10^{16}$ atoms $/ \mathrm{cm}^{3}$ and $\mathrm{N}_{\mathrm{D}}=10^{14}$ atoms / cm ${ }^{3}$
$n_{n}=N_{D} \& p_{n}=\frac{n i^{2}}{n_{n}}$
$\therefore p_{n}=\frac{6.25 \times 10^{26}}{10^{14}}$
$\therefore p_{n}=6.25 \times 10^{12}$ atoms $/ \mathrm{cm}^{3}$
now $p_{p}=N_{A} \& n_{p}=\frac{n i^{2}}{p_{p}}$
$\therefore n_{p}=\frac{6.25 \times 10^{26}}{10^{16}}$
$\therefore \mathrm{n}_{\mathrm{p}}=6.25 \times 10^{16}$ atoms $/ \mathrm{cm}^{3}$
Now we know that,
$P_{n}(0)=P_{\text {no }}\left(e^{v / v_{T}}-1\right)$

$$
=6.25 \times 10^{12} \times\left(\mathrm{e}^{0.15 / 0.0259}-1\right)
$$

$\mathrm{P}_{\mathrm{n}}(\mathrm{o})=2.04 \times 10^{15}$
$\& n_{p}(0)=n_{p o}\left(e^{\mathrm{v} / \mathrm{v}_{\mathrm{T}}}-1\right)$

$$
=6.26 \times 10^{10}\left(\mathrm{e}^{0.15 / 0.0259}-1\right)
$$

$\therefore \mathrm{n}_{\mathrm{p}}(\mathrm{o})=2.04 \times 10^{13}$
Now $L_{n}=0.04 \mathrm{~cm}$ and $\mathrm{L}_{\mathrm{p}}=0.05 \mathrm{~cm}$
$\therefore \mathrm{n}_{\mathrm{p}}(\mathrm{x})=\mathrm{n}_{\mathrm{p}}(\mathrm{o}) \mathrm{e}^{-\mathrm{x} / \mathrm{L} \mathrm{n}}$
$\therefore \mathrm{n}_{\mathrm{p}}(\mathrm{x})=2.04 \times 10^{13} \mathrm{e}^{-\mathrm{x} / 0.04}$
$\& P_{n}(x)=P_{n}(o) e^{-x / L p}$
$\therefore \mathrm{P}_{\mathrm{n}}(\mathrm{x})=2.04 \times 10^{15} \mathrm{e}^{-\mathrm{x} / 0.05}$
Hole diffusion current $\mathrm{I}_{\mathrm{p}}(0)=-q D p \frac{d P}{d x}$
$=\frac{A q D_{P} P_{n o}}{L_{p}}\left(e^{v / v T}-1\right)$
$=\frac{0.02 \times 1.6 \times 10^{-19} \times 50 \times 2.04 \times 10^{15}}{0.05}$
\therefore Hole diffusion current $\mathrm{I}_{\mathrm{P}}(\mathrm{o})=6.53 \mathrm{~mA}$
And $I_{P}(x)=I_{P}(0) e^{-x / L p}$
Similarly
Electron diffusion current
$\mathrm{I}_{\mathrm{n}}(\mathrm{o})=q D_{n} \frac{d n}{d x}$
$=\frac{A q D_{n} n_{p o}\left(e^{v / v T}-1\right)}{L_{n}}$
$=\frac{0.02 \times 1.6 \times 10^{-19} \times 100 \times 2.04 \times 10^{13}}{0.04}$
\therefore Electron diffusion current $\mathrm{In}_{\mathrm{n}}(\mathrm{o})$
$=0.163 \mathrm{~mA}$
And $\mathrm{I}_{\mathrm{n}}(\mathrm{x})=\mathrm{I}_{\mathrm{n}}(\mathrm{o}) \mathrm{e}^{-\mathrm{x} / \mathrm{ln}}$

3. For the circuit shown transistor θ_{1} \& θ_{2} both operate in active region with $V_{B E 1}$ $=\mathrm{V}_{\mathrm{BE} 2}=0.7 \mathrm{~V}, \beta_{1}=75 \& \beta_{2}=50$ then
a) Find the currents $I_{B 1}, I_{C 1}, I_{E 1}, I_{B 2}, I_{C 2}$, $\mathrm{I}_{\mathrm{E} 2}, \mathrm{I}_{1}, \mathrm{I}_{2}$
b) Find output voltages V_{01} and V_{02}

Applying Thevenin's theorem we get
$V t h=\frac{v c c}{R_{1}+R_{2}} \times R_{2}$
$=\frac{24}{15+10} \times 10$
$\therefore \mathrm{vth}=9.6 \mathrm{~V}$
\& Rth $=\mathrm{R}_{1}| | \mathrm{R}_{2}$
$=15| | 10$
Rth $=6 \mathrm{k} \Omega$
\therefore Equivalent circuit will be

Applying KVL in loop (1)
$-9.6+(106) I_{B 2}+0.7+0.7+0.1 I_{E 1}$
$=0$
Now $\mathrm{I}_{\mathrm{E} 2}=\mathrm{I}_{\mathrm{B} 1}$
$\therefore\left(1+\mathrm{B}_{2}\right) \mathrm{I}_{\mathrm{B} 2}=\mathrm{I}_{\mathrm{B} 1}$
\& $I_{E 1}=\left(1+B_{1}\right) I_{B 1}$
$=\left(1+B_{1}\right)\left(1+B_{2}\right) I_{B 2}$
$\mathrm{I}_{\mathrm{E} 1}=76 \times 51 \times \mathrm{I}_{\mathrm{B} 2}$
$\therefore \mathrm{I}_{\mathrm{E} 2}=3876 \mathrm{I}_{\mathrm{B} 2}$
\therefore Equation (I) become,
$-9.6+106 \mathrm{I}_{\mathrm{B} 2}+0.7+0.7+0.1 \times$
$3876 \mathrm{I}_{\mathrm{B} 2}=0$
$\therefore 493.6 \mathrm{I}_{\mathrm{B} 2}=8.2$
$\therefore \mathrm{I}_{\mathrm{B} 2}=0.01661 \mathrm{~mA}$
$\therefore I_{B 2}=16.61 \mu \mathrm{~A}$
$\therefore \mathrm{I}_{\mathrm{C} 2}=\mathrm{B}_{2} \mathrm{I}_{\mathrm{B} 2}$
$=50 \times 0.01661$
$\therefore \mathrm{I}_{\mathrm{C} 2}=0.83 \mathrm{~mA}$
\& $\mathrm{I}_{\mathrm{E} 2}=\mathrm{I}_{\mathrm{B} 2}+\mathrm{I}_{\mathrm{C} 2}$
$=0.01661+0.83$
$\underline{I}_{\mathrm{E} 2}=0.8472 \mathrm{~mA}$
Now $\mathrm{I}_{\mathrm{E} 2}=\mathrm{I}_{\mathrm{B} 1}$
$\therefore \mathrm{I}_{\mathrm{B} 1}=0.8472 \mathrm{~mA}$
$\therefore \mathrm{I}_{\mathrm{C} 1}=\mathrm{B}_{1} \mathrm{I}_{\mathrm{B} 1}$
$=75 \times 0.8472$
$\therefore \mathrm{I}_{\mathrm{C}}=63.54 \mathrm{~mA}$
\& $\mathrm{I}_{\mathrm{E} 1}=\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{B} 1}$
$=63.54+0.8472$
$\underline{\mathrm{I}_{\mathrm{E}}}=64.38 \mathrm{~mA}$
Now $\mathrm{V}_{01}=\mathrm{V}_{\mathrm{cc}}-\mathrm{I}_{\mathrm{c} 1} \times 0.2$
$=24-63.54 \times 0.2$
$\therefore \mathrm{V}_{01}=11.292 \mathrm{~V}$
And $\mathrm{V}_{\mathrm{O} 2}=\mathrm{I}_{\mathrm{E} 1} \times 0.1$
$=64.38 \times 0.1$
$\therefore \mathrm{V}_{02}=6.438 \mathrm{~V}$

Now again redrawing the given circuit.

Applying KVL in loop (2)
$\therefore-10 \mathrm{I}_{2}+100 \mathrm{I}_{\mathrm{B} 2}+0.7+0.7+0.1 \mathrm{I}_{\mathrm{E} 1}$ $=0$
$\therefore 10 \mathrm{I}_{2}=100 \times 0.01661+0.7+0.7+$
0.1×64.38
$\therefore 10 \mathrm{I} 2=9.497$
$\therefore \mathrm{I}_{2}=0.9497 \mathrm{~mA}$
Now applying KCL at node B
$\therefore \mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{\mathrm{B} 2}$
$=0.9497+0.01661$
$\therefore \mathrm{I}_{1}=0.9663 \mathrm{~mA}$
4. A step-graded germanium diode has a resistivity of $2.5 \Omega-\mathrm{cm}$ on the p side and $1.5 \Omega-\mathrm{cm}$ on the n side. Calculate the height of the potential barrier.
For germanium $\mu_{p}=1800 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$ and $\mu_{\mathrm{n}}=3800 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$ and $\mathrm{n}_{\mathrm{i}}=2.5 \times$ $10^{13} / \mathrm{cm}^{2}$ at $300^{\circ} \mathrm{K}$. Prove formula used.
Sol.
Given, step-graded germanium diode
has resistivity $\rho_{p}=2.5 \Omega-\mathrm{cm}$
Resistivity of n-side $\rho_{\mathrm{n}}=1.5 \Omega$-cm
Mobility of hole $=1800 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$,
Mobility of electron $=3800 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$
Intrinsic concentration $n_{i}=2.5 \times$ $10^{13} / \mathrm{cm}^{2}$
Acceptor concentration $\mathrm{N}_{\mathrm{A}}=$?
$\sigma_{p}=p q \mu_{\mathrm{p}} \approx N_{\mathrm{A}} q \mu \mathrm{p}$ \qquad (for p-type)

$$
\frac{1}{\rho_{p}}=N_{A} q \mu_{p} \Rightarrow N_{A}=\frac{1}{\rho_{p} q \mu_{p}}
$$

$$
=\frac{1}{2.5 \times 1.6 \times 10^{-19} \times 1800}
$$

$\mathrm{N}_{\mathrm{A}}=1.388 \times 10^{15}$ atoms $/ \mathrm{cm}^{3}$
Donor concentration $N_{D}=$?
$\sigma=n q \mu_{n} \approx N_{D} q \mu n$ (for n-type)
$\frac{1}{\rho_{\mathrm{n}}}=N_{\mathrm{D}} q \mu_{\mathrm{n}} \Rightarrow N_{D}=\frac{1}{\rho_{\mathrm{n}} q \mu_{\mathrm{n}}}$
$=\frac{1}{1.5 \times 1.6 \times 10^{-19} \times 3800}$
$N_{D}=1.096 \times 10^{15}$ atoms $/ \mathrm{cm}^{3}$
Height of potential barrier
$\mathrm{V}_{0}=\frac{\mathrm{KT}}{\mathrm{q}} \ln \left(\frac{\mathrm{N}_{\mathrm{A}} \mathrm{N}_{\mathrm{D}}}{\mathrm{n}_{\mathrm{i}}^{2}}\right)$
$\Rightarrow \mathrm{V}_{0}=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{N}_{\mathrm{A}} \mathrm{N}_{\mathrm{D}}}{\mathrm{n}_{\mathrm{i}}^{2}}\right)$

Formula proof

$E_{1}=E_{F_{i}}-E_{F_{p}}=K T \ln \left(\frac{N_{A}}{n_{i}}\right)$
$E_{2}=E_{F_{n}}-E_{F_{i}}=K T \ln \left(\frac{N_{D}}{n_{i}}\right)$
$\Rightarrow E_{0}(\mathrm{eV})=\mathrm{E}_{1}+\mathrm{E}_{2}=\mathrm{E}_{\mathrm{Cp}}-\mathrm{E}_{\mathrm{Cn}}=\mathrm{E}_{\mathrm{Vp}}-$ Evn
$\Rightarrow E_{0}(e V)=E_{1}+E_{2}=K \operatorname{Tn}\left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)$
$\mathrm{V}_{0}(\mathrm{~V})=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{N}_{\mathrm{A}} \mathrm{N}_{\mathrm{D}}}{\mathrm{n}_{\mathrm{i}}^{2}}\right)$
$\mathrm{E}_{\mathrm{Fi}} \rightarrow$ Fermi level in intrinsic
$\mathrm{E}_{\mathrm{Fp}} \rightarrow$ Fermi level in P-type semiconductor
$\mathrm{E}_{\mathrm{fn}} \rightarrow$ Fermilevel in n-type semiconductor
$\therefore \mathrm{V}_{\mathrm{o}}=0.026 \ln \left(\frac{1.388 \times 10^{15} \times 1.096 \times 10^{15}}{\left(2.5 \times 10^{13}\right)^{2}}\right)$
$=0.2027 \mathrm{~V}$
5. For the circuits in fig. μ_{n} Cox $=2.5 \mu_{\mathrm{p}}$ Cox $=20 \mu \mathrm{~A} / \mathrm{V}^{2},\left|\mathrm{~V}_{\mathrm{t}}\right|=1 \mathrm{~V}, \lambda=0, \mathrm{Y}=0, \mathrm{~L}$ $=5 \mu \mathrm{~m}$, and $\mathrm{W}=15 \mu \mathrm{~m}$, unless otherwise specified. Find the labelled currents and voltages.

(a)

(b)

(c)

Sol.
(a)

(a)
$\mathrm{Q}_{2}, \mathrm{Q}_{1}$ operating in saturation $\mathrm{i}_{\mathrm{D} 1}=\mathrm{i}_{\mathrm{D} 2}$
Also $\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}$
$\therefore 3 \mathrm{~V}=\mathrm{V}_{\mathrm{GS} 1}+\mathrm{V}_{\mathrm{GS} 2} \Rightarrow \mathrm{~V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}=1.5 \mathrm{~V}$, $\mathrm{V}_{2}=1.5 \mathrm{~V}$
$I_{1}=\frac{1}{2} \times 20 \times \frac{15}{5}(1.5-1)^{2}=7.5 \mu \mathrm{~A}$
(b)

(b)

Both transistors have $V_{D}=V_{G}$ and therefore they are operating in saturation $\mathrm{i}_{\mathrm{D} 1}=\mathrm{i}_{\mathrm{D} 2}$
$\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}}\left(\mathrm{V}_{4}-1\right)^{2}=\frac{1}{2} \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}}\left(3-\mathrm{V}_{4}-1\right)^{2}$
$\therefore 2.5\left(\mathrm{~V}_{4}-1\right)^{2}=\left(2-\mathrm{V}_{4}\right)^{2}$
$1.58\left(V_{4}-1\right)^{2}= \pm\left(2-V_{4}\right) \Rightarrow V_{4}=1.39$
$\mathrm{V}_{4} \simeq 1.4 \mathrm{~V}$
$I_{3}=\frac{1}{2} \times 20 \times \frac{15}{5}(1.39-1)^{2}=4.6 \mu \mathrm{~A}$
(c)

$\frac{W_{1}}{L_{1}}=\frac{37.5}{5}=7.5$
$\frac{W_{2}}{L_{2}}=\frac{15}{5}=3$
$\frac{W_{1}}{L_{1}}=2.5 \times \frac{W_{2}}{L_{2}}$
Now $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}_{2}}{\mathrm{~L}_{2}}=\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}_{1}}{\mathrm{~L}_{1}}$
So $\mathrm{i}_{\mathrm{D} 1}=\mathrm{i}_{\mathrm{D} 2}$
$\Rightarrow \mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{GS} 2}=\frac{3}{2}=1.5 \mathrm{~V}=\mathrm{V}_{5}$
$\mathrm{I}_{6}=\frac{1}{2} \times 20 \times \frac{15}{5}(1.5-1)^{2}=7.5 \mu \mathrm{~A}$

India's \#1 Online Preparations App for GATE, ESE, State Engg. Exams, PSU's \& JE Exams

> Latest Job and Exam Notifications
, Get Queries Resolved by Experts \& Gradians
> Practice 5000+ Topic wise Questions \& earn Coins
> All India Test Series with Latest Pattern
, Exam Oriented Online Classroom Platform

